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Conditionally Stable Amplifier
Design Using Constant pu-Contours

Marion Lee Edwards, Senior Member, IEEE, and Sheng Cheng, Member, IEEE

Abstract— Conditionally stable amplifiers (0 <% < 1) can be
an attractive design option for commercial applications where
increased gain can be achieved by accepting a measured risk
of instability. A procedure is presented for designing amplifier
input and output matching networks which permits an a-priori,
quantitative trade-off between gain and the stability parameter,
u (or p'). Analytical results have been derived suitable for CAD
implementation.

I. INTRODUCTION

ONDITIONALLY STABLE amplifiers can be designed
Cwith either the input or output conjugately matched but
not both [1], [2]. If the output is to be matched then the overall
gain of the amplifier, referred to as the available gain [3], is a
function of the source reflection coefficient, I'g. Edwards et. al.
[2] have shown that a specific available gain circle, designated
as the Maximum Single-sided Match (MSM) gain circle,
delineates a region in the Smith Chart where I'g produces an
output impedance that can be conjugately matched in the stable
region of the load plane. The gain associated with the MSM
circle, determines the maximum available gain achievable
under these conditions. While the MSM circle shows the
desirable region for I's it does not indicate gquantitatively
the degree of stability or instability that the overall amplifier
design will have. This is usually considered by examining
the stability circles of the overall amplifier once the design is
completed to see the extent to which they encroach the passive
Smith Chart region. A quantitative implementation of this is
achieved by calculating the stability parameters p and p’ [4],
[5] of the completed amplifier. It would be desirable to know
the degree of stability implied by a particular choice of I'g
prior to completing the amplifier design. To this end a method
is developed to forecast the value of p and p’ for the complete
amplifier based on the I"s choice. It is not obvious that such a
procedure is possible since there are muitiple implementations
of matching networks. However, this paper will show that for
IMN (Input Matching Network) and OMN (Output Matching
Network) which are passive, lossless, and reciprocal that
and y' of the complete amplifier are uniquely defined by T's
and the transistor S-parameters. Consequently, it is possible
to plot contours of constant u and p’ on the source Smith
Chart which are shown to coincide with the constant available
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gain circles. The choice of I's can therefore be made by
considering the trade-off between gain and stability. In reality,
actual matching networks will have some slight loss but this
tends to improve stability. Hence this approach is conservative
in that the measured stability is usually better than the designed
stability. The procedure is illustrated with a practical example.

By duality, if the input of a conditionally stable amplifier
is to be matched then the gain, referred to as operating
power gain, is a function of the load reflection coefficient,
T'r. Again if the IMN and OMN are passive, lossless and
reciprocal networks then p and p' of the complete amplifier
are determined by I'y, thereby permitting the designer to make
a trade off between gain and stability.

II. MATCHING CIRCUIT PROPERTIES

Matching circuit are most often created by combining
passive elements such as inductors, capacitors, transmission
lines, and open circuited or short circuited transmission line
stubs. It is often a good approximation at RF and microwave
frequencies to assume that these elements are lossless. Collin
[6] has shown that the S-parameters for a Passive Lossless
Reciprocal Network (PLRN) are of the form

. 511 \/1 bt ISHPBJ’Y
SPLRN = ( /T = [S11|2ed™ — 8602 NCY

Therefore, an OMN that transforms I';, to 50 € has an S-

matrix equal to
S _ FL \/l— IFLPB].PY
OMN T /1= [T’z [2e?” —T'% e227 )

Similarly, an IMN that transforms 50  to I's has an S-matrix

equal to
S —T% el V1 —|Tg|2e?”
IMN = 1-— |]:15|26j’Y FS '

Obviously, the S-parameters of the matching network are
determined by ['s (or I'y) and an arbitrary phase -y. Using
signal flow graphs one can see that the phase angle, v, equates
to an arbitrary length of transmission line. In both the IMN
and OMN, the transmission line is connected to the 50 2
impedance side of the matching network. This is illustrated
in Fig. 1.

Since a transmission line added to the input of an amplifier
only rotates the source stability circle about the center of the
Smith Chart, it follows that u is invariant with respect to a
transmission line (Zy) added to the input. This can be seen
analytically by directly calculating p/ for a circuit with an
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Fig. 1. A signal flow graph representation of an IMN and OMN showing that

s-parameters are uniquely determined by I's and I'z except for an arbitrary
length of transmission line.
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Fig. 2. Signal flow graphs showing the combination of a transmission line
and a general two-port circuit. -

‘added transmission line and observing that it reduces to p’ of
the circuit alone. This is illustrated in Fig. 2 and the equations
that follow:
W (TLIN + S)
B ‘ 1~ |82
|5116_j29 — S;QATLIN—Q—Sl + |Sgle_j9512€—je|
|S11 — S3,A8] + [S21512]
where Ag = 511522 — S12521.
By duality (4 is invariant with respect to a transmission line
(Zg) added to the output side
It can be shown by directly applying the S-parameters of
a PLRN that it maps the USC (Unit Smith Chart) onto itself.
In general

#'(S)

Soo — Asrs
r = 2
/ Tour =75 T; @
and substitution from (1) indicates that Ag = —e’?” and
Tour| <1

— 83,637 + Tge?7 |? <1
‘ 1-5uls -
& (=S7 +Ts)(=Su1 +T's)
<(1—-8uls)(1 - 51Ts)
& (1 [Su)[sl* < (1~ 151l
= |F5| <1
By symmetry, for a PLRN, [I'iy| <1 & |T'z] < 1.
Therefore, the source stability circle and p’are invariant with
respect to the addition of a PLRN to the output as illustrated in
Fig. 3 where T;; denotes the transistor scattering parameters.

By duality the load stability circle and g are invariant with
respect to the addition of a PLRN to the input.
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Fig. 3. Source stability circle and 4’ are invariant with respect to the addition
of a PLRN to the output.

III. CONSTANT p’-CONTOURS IN THE SOURCE PLANE

In this section it is shown that u’ of the completed amplifier
is determined by the transistor’s scattering parameters, T;;,
and the source reflection coefficient, I'g, as viewed from the
transistor. This follows because the S-parameters of the IMN
are determined by I's except for an arbitrary transmission line
at the input. Since p’ is invariant with respect to a transmission
line of characteristic impedance Z; at the input, the line length
can be set to zero. And, because y is invariant to a passive
and lossless OMN, it can be calculated by combining the S-
parameters of the transistor with those of the IMN alone. This
is illustrated in Fig. 4. The S-matrix for the combined IMN
and transistor is therefore

1
Uls,T)= T-T.Ts
' ( T — 1% T12\/1—|Fs|2) 3)
T21 1- |F5’|2 T22 — ATPS )

The stability parameter p’ of the amplifier is then
Nl - 1- |U22|2
|Ui1 = AgUss| + |Ur2Ua|
which can be shown [4] to be equivalent to
o _ U = AgUsy| = [Ur2Us |
U112 — |Ag 1 '
Substitution of the matrix elements from (3) into (4) yields,
= |C1 — BiTs 4 C1(I'5)?| — [T12Toa (1 — s [?)]

“

| Ti1 — T3 — A7 — T3P ®
Or '
, _ 101 = Bil's + CF(I§)?] = [TheTn (1 — [Ts )] ©)
Ei|Ts|2 — CiT's — CiT% + Dy
‘where
By =D+ E; (7a)
Cy =T — ApT3, (7b)
D1 =|Tu|* — |Ap)? (7¢)
Ey=1-—|Tp% (7d)
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Fig. 4. ' of the completed amplifier can be calculated using the scatter-
mg-matrix U which results from combining the IMN and transistor.

It is interesting to note that the first term with absolute sign
in the numerator can be expressed in terms of the invariant
points [2], [6] as below

|C1 — Bils + C{(F'5)?| = [C1(Ts = T)(T's = T'g)|

where I‘; and I'y are invariant points in the I's plane, ie.,
the points on the USC for which all constant gain circles
intersect. The term inside the second absolute value sign in
the numerator of (6) is always positive provided I's is in the
USC, ie., [I's] £ 1 and in that case the absolute value sign
can be dropped. Therefore

;101 = BT + CF(T5)°| — [T1Tn| (1 — [T's[?)
E1|F5|2 - CiI's — Ci‘I‘g + Dy

Or

W (E1|Ts|? — CiTs — C{T% + D)
+ [TioTn [(1 = [s]?) = [C1 — Bils + CF(T%)?]. (8)
Direct substitution shows that indeed the invariant points,

T's = F?, satisfy (8) for all values of u'. This follows since
CiTE+0iTE =By = 0,15 = 1, and

B\l -t -0iTf + D1 =B - By + D, =0.

By squaring (8) and using the fact that |z|? = zz* one can
eliminate the absolute value sign from the right-hand-side to
get the following complex variable equation in I'g.

(1 B1 = |TioTa|)® — |C1?)|Ts
+ C1[By — 2(u)? By + 24/ |12 T U5 |T's |
+ CY[By — 2(1/)? By + 24| Ty Ton [IT% [T s [
+ (W) = OIS + [(W)? = 1J(CT)*(T5)?
+ [2(1' D1 + |ThoTos ) (1 By — |T12To1)
+2(4)?|C1|* ~ BY|IUs|?
+ C1[B1 — 2(4)? Dy — 24/ |T12T1 |IT's
+ CF[By — 2(1)’ Dy — 24| Ty Ton |1
+ (W D1 + |T12T|)* — |C1f* = 0. 9
Equation (9) which involves fourth powers of the complex

variable I'g can be manipulated into the following form which
in general defines two circles in the complex plane

(I0s — M2 = P)(|ls = N>-Q) =0

provided that the lead coefficient in (9) (' E1 — |T12T21])% —
|C1]? # 0. In the case where this condition is not met, the I'g
circles are observed to become straight lines passing through
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Fig. 5. pu of the completed amplifier can be calculated from the scatter-
mg-matrix V' for the combined transistor and OMN circuits.

both invariant points. Straight lines are a limiting case of
circles where radii and centers approach infinity.

The centers of the circles, M and N along with the square
radii, P and @ are given below

_lal,

M = E1 Ccs (103)

2

P % (10b)

i
[C1[1 = (u)?] 5
= 11
E1— (p)?] — 2T D1 |(k — M’)CS (o
27¢,,1\2 _ ! 2
0= | Ta2 Do [*[(1)° — 2k +1] (11b)

B = (1) = 2[T0 T |(k — u)}?

and ég = C7/|C1] [2] is the unit vector along the direction
from the center of the USC to the center of the source stability
circle.

A comparison of the expressions given by (10) and (11)
shows that the results of (10) are included in those of (11)
as a special case where y/ = k. Thus the expressions in (11)
represent the general solution. The constant ¢ contour on the
I's plane is therefore a circle which intersects the invariant
points and is represented by the following expression.

|C1][1 = (#')?] 5
Er[l = ()% = 2[T0aToa|(k — ) °
_ { (T12To1)[(w)? — 2kp/ +1]
Erl = (W)?] = 2| T2 Do |(k — /)

The available power gain, G4, is defined in terms of the
normalized gain, g,, as G4 = g,|Ts1|? where

I's —

V)

_ 1-[Tg)?
1= T1iTs]® = [Tyo — AgTsE

Ya

It is well known that contours of constant gain [7] appear as
circles on the Smith Chart with centers defined by

= — s (13)

The centers of the constant gain circles and the center of the
constant ' circles lie on a common ray drawn from the center
of the Smith Chart defined by the unit vector ¢g. Also, it is
known that the constant 4’ contour passes through the invariant
points. Therefore, the constant p’ circles are the same family of
circles as the available gain circles. For a particular constant g/
circle, it’s corresponding g, value can be found by equating
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TABLE 1
FORMULAS FOR CONSTANT 1/ AND g CONTOURS IN THE I'5-PLANE FOR THE OUTPUT CONJUGATELY MATCHED CONDITIONALLY STABLE AMPLIFIER
Output Conjugately Matched Conditionally Stable Amplifier
I';-Plane Constant p’-Contour Constant p-Contour
G1-(w)] . 2Ac|(k-m) 3
C vs
Conter G e i) 20 -)
. (LT )[(w) =2k +1] | | (Bm)p* ~2kn+1) |
Radius - 5
Ex[l _(“’) ]"2|712T21l(k— P')‘ “T{2T21 |(1 K )+ 2D1(k - u)l
1‘(“')2] Z(k"“).MSG
Available Gain, G [—_ MSG — 2
‘ 20— ) (-7
TABLE 1I

FORMULAS FOR CONSTANT £z AND i/ CONTOURS IN THE 'y -PLANE FOR THE INPUT CONJUGATELY MATCHED CONDITIONALLY STABLE AMPLIFIER

Input Conjugately Matched Conditionally Stable Amplifier

I, -Plane Constant p1-Contour Constant p’-Contour
c Gl1-w) , 2C,[(k-w) .
4 b2
et B W) AL k-0 1L 1- (0 [+ 2D, (kW)
Radius | (fata )l 2k ] | | )y 2] |
\E(1-17) - 2,1, [(k -~

W)

(T3 1- () ]+ 20,0~ w)

(1-p7)

TR MsG
2u(1- k)

Operating Gain, G,

2(k—p) MSG

[1,(u»)2]

the centers of the circles, i.e.,

(AN CallL ~ ()?]
D+ L+ Bl = ()2 = 2T Tk - W)
Rearranging ;ql;le above formula yields
(2
9o = 2|T12f[il‘21|,5/121)—] s (14)
Or
_ Ml P _ =6 e as)

A = =
ATl (1 — k')~ 2 (1 — kpt')
where MSG (maximum stable gain) is defined as |T51 /T12/|.
IV. CONSTANT p-CONTOURS IN THE SOURCE PLANE

Since the output of the amplifier must be conjugately
matched, I'; is determined by the U matrix, ie., ['y =
U3,(T's, T). Now that 'y, is defined, the OMN is determined

up to an arbitrary transmission line added to the output. Since
(4 is invariant to the transmission line it can be ignored. Similar
to the previous case, p can be determined by considering only
the transistor combined with the OMN as illustrated in Fig. 5.
The S matrix for the combined transistor and OMN is therefore
1
Vs, T) =1 ToaUs,
_ ( T — ApUsy,  Tipy/1 - ]Uzzlz) (16)
To1y/1 — |Un|? Too — Usz '
The stability parameter y of the amplifier is then
b= 1— |Vl _
[Vaz — Ay V| 4 [Vi2Vau|
Or, alternatively
. |V22 - AVVI*ll - |V12V21l
- [Va2|* — Ay |?

a7
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Fig. 6. (a) I's plane showing MSM circle with constant y'-contours and (b)

available power gain versus p'.

Substituting the matrix elements from (16) yields
_ |Co — BolUso + C3U3,| — |TioTn (1 — |Uas)?)]
[Tog — Usz|? — |Amp — T11Usz2|?
Since U22 = FOUT
_ G2 = Bal'our + C3T8ur| — [Ti2To1 (1 — [Tour)?)|
|T22 — Tour|? = |[Ap — TiiTour|?

(18)

Equation (18) is seen to be similar to expression (5) for p’
where the first term in the numerator can be expressed in
terms of T’y and T'gyp as below.
|Cy — BoT'out + C3 Ty
= |C2(Tout — FéUT)(FS ~ Lour)l
F$UT and ' are the points where the output mapping
circle intersects the USC. The invariant points I? in the source
plane are mapped to the points ['S,. in the output plane via
the bilinear transformation (2).
The term inside the second absolute sign in the numerator
of (18) is positive provided that 'y remains in the USC,
ie., |Tour| <1, which is equivalent to saying that I'g is on
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Fig. 7. (a) I's plane showing MSM circle with constant y-contours and (b)

available power gain vs. 4.

the stable side of the source stability circle which is indeed
the case.

Examination of (18) for 4 in terms of I'oyt, and comparing
it to (5) for ' in terms of I's, one sees that they are similarly
formulated except that 1) ['oyr is not conjugated while I'g is,
and 2) the subscripts 1 and 2 of matrix 7" related parameters are
interchanged. This facilitate finding the solutions for constant
u contour on the I'oyr plane where they are known to be
circles and can be represented by

|Ca|(1 — p?)
Eo(1 — p?) = 2|T12Ton|(k — p)

Tour — &o

— ‘ (T12Toy ) (p® — 2kp + 1) ‘ (19)
Eo(1 — p?) = 2|Tho T |(k — )
where
. Cs
o = —— 20
) iG] (20)

Co is the unit vector along the direction from the center of the
USC to the center of the output mapping circle.
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Substitution of (2) into the above equation yields the con-
stant g contour in the I's plane, ie.,

3 2|C1|(k — 1) s
[T12Tor|(1 — p2) + 2Dy (k — 1)
(T1oTor)(p? — 2kp + 1)

[T12To1|(1 — p?) + 2D1(k — 1)

Since the constant p contour in the I'oyr plane passes
through the I%UT invariant points, its bilinearly trasformed
counterpart, i.e., the constant y contour in the I's plane, must
also passes through the Ffsc invariant points. Consequently,
equating the center of the constant y contour on the I's plane
with the center of the available gain circle, (13), yields the
relationship between the available power gain G4 and the
stability parameter p of the amplifier, i.e.,

2(k — p)

I's

1)

%= Tl - 17) 2
Or
2[To|(k —p) _ 20k — 1) '
G = = - MSG. 23
AT L0 = ) @)

V. CONSTANT p (OR g')-CONTOURS IN THE LOAD PLANE

The above development has concentrated on designing
a conditionally stable amplifier (0 <k < 1) with the output
conjugately matched, i.e., the design process started with I's.
Similarly, an input conjugately matched conditionally stable
amplifier can be designed starting with I'y. In this case, the
constant 4 contour is

|C2|(1 - “2) é
Ep(1 = ) — 2[TiaToa|(k — 1) "
(T12To1)[p” — 2kp + 1] l
E2(1 = p?) = 2|T12To|(k — 1)
where ¢, = C3/|Cs| 12].

These contours correspond to constant operating power gain
circles in the load plane. Equating the expressions for the
centers of the constant 4 and constant g, circles yields the
formula for the operating power gain vs. y as follows.
Gy = —— (1-p

2|TaoTon (1 — kpr)

Ty -

24

(25)

Or
2 2
_ A=) A4 yea
2(Tiz|p(l —kp)  2p(1 = kp)
Likewise, constant p’ contours can also be found on the
load plane to be circles in the following form:
2|Col(k — 1) .
Ip - N2 L
[Ty2Toa|[1 = ()] + 2Da(k — 1)
| (TeTe)l(w)? — 2k’ + 1]
[TyoTo1|[1 — (1')?] + 2Do(k — p/)
The formula for the corresponding operating power gain is
_ Ak
= Tl = ()]

Gp (26)

@7

(28)
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Fig. 8. Amplifier stability and gain as a function of x. Discrete data points
show microstrips implementation of the design.

Or,
_ 2AT|(k =) _ 2k =)
Tio|[l = (w)?] 1= (w)?]

VI. SUMMARY

Gp - MSG.

(29)

The formulas for the constant v and ' contours and their
associated gains as described in the previous two sections are
summarized in Tables I and II. These formulas can be easily
programmed in the existing CAD software packages by engi-
neers interested in designing conditionally stable amplifiers.

VII. DESIGN EXAMPLE

The design procedure is illustrated for a design using a
Mitsubishi transistor operating at 6 GHz. Figs. 6(a) and 7(a)
show the source plane MSM circle and constant g’ and p
contours respectively. In both cases the ;' and g contours are
observed to also be available gain circles. The relationships
of available gain vs. ' and p are shown in Figs. 6(b) and
7(b). Therefore, choosing the available gain determines both
the u’ and g stability factor that will result for the completed
amplifier.

Since the constant ;4 contour are gain circles then it is
sufficient to choose I's a distance, x, from the Smith Chart
center along the line of lowest gradient defined by the unit
vector ¢g which points to the center of the MSM circle. In
this case u, ', and the available gain are functions of x and
are plotted in Fig. 8.

Several input and output matching networks were designed
for an externally biased amplifier using Mitsubishi MGF-
4301A MESFET at 6 GHz. The designs assume a range of z
values with IMN and OMN microstrip boards to be integrated
on a carrier with a raised center ridge for transistor grounding.
The amplifier layout is illustrated in Fig. 9.
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Fig. 9. Amplifier layout for z = 0.4.

The resulting S-parameters for each amplifier were then
used to calculate p, ¢/ and normalized gain. These data points
have been added to the plot in Fig. 8 for comparison. The fact
that the gain is less than the ideal and the stability parameters
are greater than the ideal is attributable to the losses in the
dielectric and microstrip lines.

VIII. CONCLUSION

A procedure has been developed for designing conditionally
stable amplifiers where the input and output matching net-
works can be selected with an a priori, quantitative knowledge
of the gain and the stability parameter, p and p’. This permits
the designer to. make a trade-off between gain and stability.
Contours of constant g (or p') are shown to coincide with
constant gain circles and explicit formulas for the center and
radius are given. The relationship between gain yx and (or p)
is also given. The technique is illustrated in the design of a
conditionally stable C band amplifier.
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